
Journal of Applied Mechanics and Technical Physics, Vol. 45, No. 2, pp. 281–285, 2004

SPONTANEOUS NUCLEATION OF BUBBLES IN A GAS-SATURATED

MELT UNDER INSTANTANEOUS DECOMPRESSION

UDC 532.787:550.3A. A. Chernov,1 V. K. Kedrinskii,2 and M. N. Davydov2

Based on the kinetic theory of phase transitions, the problem of spontaneous nucleation of gas bub-
bles in a gas-saturated melt under instantaneous decompression is considered. The total number of
nucleation centers formed in the process and their size distribution function are found.
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Introduction. According to Henry’s law, the gas dissolved in a liquid undergoing decompression becomes
supersaturated, which results in spontaneous origination of gas bubbles in the liquid. Despite of considerable efforts
undertaken in studying this phenomenon, there is no theory adequately predicting the final number of bubbles
formed in the process and their mean size. Therefore, in most studies, the nucleation of bubbles is assumed to be
instantaneous, while the total number of bubbles is determined either from experimental data or from rather rough
estimates [1].

In the present work, we consider the problem of the nucleation kinetics of bubbles in a gas-saturated liquid
undergoing instantaneous decompression with allowance for the decrease in the gas-supersaturation level, which
results in nucleation cessation. The model allows one to find the total number of formed bubbles and their size
distribution function. As a gas-saturated liquid, we consider a magmatic melt with dissolved water; investigation
into the degassing process of this substance is of considerable significance in modeling explosive volcanic eruptions [2].

Problem Formulation and Analytical Solution. We consider a volume of a gas-saturated melt that
undergoes instantaneous decompression at the initial time. As was noted above, decompression results in spon-
taneous nucleation of gas bubbles. As the bubbles grow in size, a diffusion zone where the nucleation of other
bubbles is suppressed is formed around them. A typical pattern of the process is illustrated in Fig. 1. The gen-
eral probabilistic solution of a similar problem of the crystallization kinetics of an undercooled melt was found by
A. N. Kolmogorov [3]. From the condition that new nucleation centers can appear only in the uncrystallized region,
the time evolution of the crystallized-mass fraction and of the total number of formed crystallization centers was
obtained for a fixed nucleation frequency and a fixed number of centers being formed. Modifying this solution to
the case of degassing kinetics and using the analogy between the crystallite volume and the diffusion-zone volume
around an individual bubble, we have

XD(t) = 1− exp
(
−

t∫
0

J(t′) vD(t− t′) dt′
)
, (1)

where XD is the total volume of all diffusion zones around the bubbles in a unit volume of the melt, J is the
nucleation frequency, and vD is the volume of the diffusion zone around an individual bubble, which will be defined
below. Then, the total number Nb of bubbles formed in a unit volume during the time t is

Nb(t) =

t∫
0

J(t′) (1−XD(t′)) dt′. (2)

1Kutateladze Institute of Thermophysics, Siberian Division, Russian Academy of Sciences, Novosibirsk
630090. 2Lavrent’ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences, Novosibirsk
630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 45, No. 2, pp. 162–168, March–
April, 2004. Original article submitted September 11, 2003.

0021-8944/04/4502-0281 c© 2004 Plenum Publishing Corporation 281



3
2

1

Fig. 1. Schematic representation of the bubble nucleation process in a gas-saturated melt under
decompression: 1) bubble; 2) diffusion layer; 3) nucleation region.

In the general case, the nucleation frequency J is the sum of the homogeneous-nucleation frequency Jhom

and the heterogeneous-nucleation frequency Jhet, which have the following form in the classical kinetic theory of
phase transitions:

Jhom = J∗hom exp
(
− W∗

kBT

)
, Jhet =

Nhet∑
i=1

J∗het,i exp
(
− W∗ψ(ϕi)

kBT

)
. (3)

Here kB is the Boltzmann constant, T is the melt temperature, J∗hom = (2n2
gasvgD/d)(σ/(kBT ))1/2 is the preex-

ponent [5], σ is the surface tension at the melt–gas interface, ngas is the number of potential nucleation centers
that can be formed in a unit volume of the melt, assumed to be equal to the total number of gas molecules in the
melt, D is the diffusivity of the gas in the melt, vgas is the volume of the gas molecule, d is the mean distance
between the neighboring gas molecules in the melt, ψ(ϕi) = (1/4)(1 + cosϕi)2(2 − cosϕi), ϕi is the equilibrium
wetting angle of the surface of the ith foreign particle, Nhet is the number of foreign particles in a unit volume of
the melt, W∗ = 16πσ3/(3∆P 2) is the work spent on forming a critical nucleus in the homogeneous process, and
∆P = Psut − Pf is the difference between the saturation pressure Psut and the current pressure Pf . The pressure
difference ∆P can be expressed in terms of melt supersaturation C − Cf with the use of Henry’s law, which has
the form C(P ) = KH

√
Psut (C is the equilibrium mass concentration and KH is Henry’s constant) for water dis-

solved in a magmatic melt [4]. The preexponent for heterogeneously nucleated bubbles has the same form as in the
homogeneous case, except for the replacement of ngas by the number ni of potential nucleation centers (molecules)
on the surface of the ith foreign particle.

It follows from (3) that the heterogeneous-nucleation frequency depends on supersaturation more weakly
than the homogeneous-nucleation frequency does. Therefore, the prevailing process for ∆P & {8π(1 − ψ(ϕ))σ3

/[3kBT ln (ngas/(nNhet))]}1/2 is homogeneous nucleation. In deriving the latter formula, it was assumed, for sim-
plicity, that the melt contains foreign particles of one type.

Generally speaking, the a priori description of heterogeneous nucleation is difficult because the process
depends on many factors whose role still remains poorly understood. For this reason, we restrict ourselves to the
qualitative description of the process. Prior to considering heterogeneous nucleation, let us study the case of purely
homogeneous nucleation.

To find the thickness of the diffusion layer formed around an individual growing bubble, we use the solution
obtained in [6], where it was shown that the bubble growth is a diffusion-controlled process for Peclet numbers
Pe = ∆PR2

b/(ηD) � 1; for Pe � 1, this process is governed by viscous stresses (Rb is the bubble radius and η is
the melt viscosity). The quasi-stationary solution of the problem is [6]

C(r) = Ci − (Ci − Cf )Rb/r. (4)
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Fig. 2. Gas concentration and nucleation frequency as functions of r (notation the same as in Fig. 1).

Here, C(r) is the gas concentration in the melt as a function of the radial coordinate r with the origin at the bubble
center, Ci and Cf are the equilibrium dissolved-gas concentrations under the initial pressure Pi and under the
final pressure Pf , respectively (these concentrations are given by Henry’s law), the time dependence of the bubble
radius is Rb(t) =

√
Defft, where Deff = 2Dρm(Ci − Cf )/ρgas is the “effective” diffusivity, ρm is the melt density,

ρgas = MgasPf/(RT ) is the gas density in the bubble (this density can be found from the equation of state for a
perfect gas), and Mgas is the molecular weight of the gas.

Because of the low viscosity of heavily gas-saturated magmatic melts of interest [1], the above-given solution
holds almost from the very beginning of bubble nucleation.

It follows from (4) that the dissolved-gas concentration decreases when approaching the growing bubble, i.e.,
a diffusion boundary layer is formed around the bubble (Fig. 2). Since the nucleation frequency strongly depends
on supersaturation [see relation (3)], the bubbles can be assumed in the first approximation to nucleate outside the
diffusion layer only (region 3 in Fig. 2), and the nucleation frequency in the diffusion zone can be assumed to equal
the nucleation frequency at infinity. Indeed, nucleation of new bubbles in the diffusion layer, although possible,
does not contribute appreciably to degassing because the nucleation frequency there is much lower then outside the
diffusion zone.

In solving the problem posed, we consider only the growth mechanism of an isolated bubble. This can be
made because, as follows from the reasoning described above, nucleation is observed until the diffusion layers of the
neighboring bubbles start interacting with each other.

We determine the diffusion-layer thickness rD from the condition J(rD)/J(r →∞) = 1/10. Substituting ex-
pression (3) for the nucleation frequency into this relation and taking into account Eq. (4), we obtain rD(t) = æRb(t),
where æ = 64πσ3/(3kBT (Pi − Pf )2(1 +

√
Pf/Pi ) ln 10). Since, in the problem of interest, æ � 1 (the diffusion-

layer thickness is much greater than the bubble radius), the time evolution of the diffusion-zone volume around an
individual bubble is described by the expression vD(t) = (4π/3)æ3R3

b(t). Substituting the latter expression into (1)
and (2), with due regard that, according to the accepted assumptions, the nucleation frequency outside the diffusion
zone remains constant throughout the whole process and only the volume in which nucleation is possible is changed,
we find the time dependence of the total number of bubbles formed in a unit volume of the melt:

Nb(t) = (J/Deff) 3/5 [(8π/15)æ3]−2/5 I{[(8π/15)æ3JD
3/2
eff ]2/5 t}. (5)

Here I(τ) =

τ∫
0

exp (−χ5/2) dχ. It follows from Eq. (5) that the nucleation rate of bubbles rapidly decreases with

time and finally vanishes. The reason is that, as the formed bubbles grow in size, the volume of the diffusion zone
around them, where nucleation is suppressed, rapidly increases.

Let us estimate now the characteristic time of the nucleation process. Assuming that the nucleation rate of
new centers dNb/dt becomes negligibly low when the integrand exponent in the function I(τ) becomes equal to 100,
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we obtain tnucl ' 1002/5[(8π/15)æ3JD
3/2
eff ]−2/5. After this value of time, further degassing of the melt proceeds

at the expense of already formed growing centers only. The characteristic nucleation time rapidly decreases with
increasing supersaturation.

Let us find the total number of bubbles formed in the process. Taking into account that I(∞) ' 0.887, we
obtain

Nb = 0.887(J/Deff)3/5 [(8π/15)æ3]−2/5. (6)

In fact, relation (6) describes the dependence of the total number of decompression-induced bubbles on the initial
supersaturation of the melt.

Let us find the size distribution function of the nuclei f = (1/Nb) dNb/dRb (apparently, this function is
time-dependent because new bubbles appear in the melt while already formed bubbles grow in size):

f(Rb, t) = 2Rb (J/Deff) exp{−(8π/15)æ3(J/Deff)(Defft−R2
b)5/2}/Nb(t).

Note that the size distribution function is normalized to the total number of bubbles that emerged in the melt during

the time t, i.e.,

√
Deff t∫
0

f(Rb, t) dRb = 1. The integration here is performed to the size of the bubble originated at

the very beginning of the process. Obviously, the final form of the size distribution function (after the nucleation
is completed) remains unchanged; further diffusion-controlled growth of already formed bubbles just shifts the
function to greater sizes. Knowing the size distribution function, one can readily find the time dependence of the

mean bubble radius: R̄b(t) =

√
Deff t∫
0

Rbf(Rb, t) dRb.

The above-described considerations are also applicable to the case of heterogeneous nucleation; the only
difference here is that the homogeneous-nucleation frequency is to be replaced everywhere by the heterogeneous-
nucleation frequency for the ith foreign particle, followed by summation over all heterogeneous centers. In addition,
a new parameter æi = æψ(ϕi) should be introduced instead of æ. The latter relation is valid if foreign particles of
one type are uniformly distributed throughout the volume, and the diffusion zones around the bubbles formed at
foreign particles have a spherical shape. This approximation is fairly reasonable if foreign particles are small in size
and not too active. The problem of the total gas emission on solid surfaces and coarse foreign particles requires an
additional analysis and is not considered here.

It should be noted that the proposed approach can also be used in solving problems of degassing of super-
saturated solutions, where supersaturation is caused by reasons other than decompression (e.g., segregation of the
dissolved gas by a travelling crystallization front [7]). In particular, for different relations between the equilibrium
dissolved-gas concentration and pressure in Henry’s law, it suffices to properly recalculate the parameter æ.

Computation Results. We simulated degassing of heavily gas-saturated magmatic melts with an initial
mass concentration of dissolved water greater than 3%. The problem parameters were as follows [6]: density
ρm = 2300 kg/m3, diffusivity D = 2 · 10−11 m2/sec, Henry’s constant KH = 4.33 · 10−6 Pa−1/2, and surface tension
σ = 0.076 J/m2. The melt temperature was assumed to be 1150 K.

Figure 3 shows the calculated number of bubbles formed in the process versus initial supersaturation. The
solid curve refers to the case of homogeneous nucleation, which is manifested beginning from ∆P & 80 MPa.
With increasing supersaturation, the number of decompression-induced bubbles increases. As was noted above, the
exact description of this process is complicated because the expression for the heterogeneous-nucleation frequency
includes parameters hard to obtain experimentally. The whole process can be better understood from the qualitative
dependence represented by the dashed curve in Fig. 3. In the computations, the melt was assumed to contain one
type of foreign particles 0.1 µm in size, the number of particles was 1012 m−3, and the wetting angle was ϕ = 3π/4.
Note, beginning from the supersaturation ∆P ≈ 100 MPa, homogeneous nucleation prevails over heterogeneous
one. Figure 3 also shows the experimental data of [5]. In a wide range of ∆P , the calculated and measured
values are in good agreement; a certain difference at high values of ∆P ≈ 120 MPa, is caused by the fact that the
characteristic nucleation time in the case under consideration has the same order of magnitude as the duration of melt
decompression in the experiment, whereas decompression in the proposed model is assumed to be instantaneous.
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Fig. 3. Number of bubbles formed due to decompression versus initial supersaturation: the solid and dashed curves refer
to calculations for homogeneous and heterogeneous nucleation, respectively; the points show the experimental data of [5].

Fig. 4. Size distribution function of bubbles.

Figure 4 shows the size distribution function at the end of nucleation, tnucl = 0.002 sec (the initial pressure
was assumed to be 100 MPa, and the final one was assumed to equal the atmospheric value). The shape of the
distribution function shows that nucleation primarily occurs at the initial stage of the process. The mean bubble
radius by the end of nucleation reaches approximately 6 µm, whereas the simplest estimate [1] of the maximum
possible bubble size that can be reached if the entire mass of the initially dissolved gas is converted into bubbles
yield a value of 80 µm, i.e., the predominant fraction of the gas mass is released at the stage of diffusion-controlled
growth of the bubbles (t > tnucl). Hence, the assumption that nucleation of bubbles can be considered as an
instantaneous process seems to be fairly reasonable.

Conclusions. The problem of spontaneous nucleation of bubbles in a gas-saturated magmatic melt under
instantaneous decompression is considered. Based on the classical kinetic theory of phase transitions and on the
modified total-conversion theory, the dependence of the total number of degassing-induced nucleation centers on
the initial decompression-induced supersaturation is found. The characteristic nucleation time is estimated. The
size distribution function of nuclei is obtained. The calculated results are in good agreement with experimental
data reported by other authors.
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